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Abstract – The following paper presents the 

methodology of monitoring the state of the ratchet 

mechanisms in the presence of noise. The fault 

detection is based on the acoustic analysis of the signals 

generated by the revolving mechanism. Decision is 

made using machine learning methods, which accuracy 

is compared. The object of the analysis is the ratchet 

mechanism installed in the actual BMX-type bicycle. It 

was shown that the noise suppression approach is 

suitable for the applied diagnostic framework, leading 

to the high accuracy in detecting catastrophic faults, 

such as breaking the tooth inside the mechanism.  
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 I. INTRODUCTION 

Processing of acoustic signals is the popular tool in the 

diagnostics of mechanical systems. Moving or rotating 

machinery often generates sound that can be used to 

determine its actual state. Magnetic bearings or centrifugal 

pumps are common objects of analysis [1,2]. One of the 

most significant problems during the fault detection is the 

environmental noise, degrading the sound quality. This is 

also the challenge for the Artificial Intelligence (AI)–

based approaches, where the disturbances in data degrade 

the ability to accurately classify particular damages in the 

System Under Test (SUT). Therefore the important 

operation before the actual decision making may be 

implemented, among others, should be the noise 

elimination in order to suppress the unwanted components 

of the signal. This is the case for the ratchet mechanisms 

considered in the presented research.  

Classification of faults in the uncertainty conditions is 

one of the pressing challenges for the modern, intelligent 

diagnostic procedures. There are multiple approaches 

tackling the noise and corrupted data, such as Support 

Vector Machines (SVM), Fuzzy Logic (FL), Rough Sets 

(RS) or Grey Systems (GS) [3]. They are all well 

established in the technical diagnostics domain (for 

instance, to detect cracks inside the induction motor [4]). 

and are often used where the real-world data are processed 

and the different types of disturbances pose a challenge for 

the accurate fault identification and location.  

The following paper presents the methodology for 

diagnosing the state of the ratchet mechanism used in the 

bicycles in the presence of environmental noise. The 

measurement system used in the research was already 

tested in the laboratory conditions, proving its usefulness 

[5]. It is now optimized to tackle the acoustic disturbances, 

making it suitable for the real-world scenarios. This 

includes both denoising procedure and selection of the best 

fault detection and location approaches. It is demonstrated 

that the applied methodology is suitable for detecting the 

subset of catastrophic faults in the uncertainty conditions 

and can be implemented in the actual diagnostic system. 

Also, the importance of the presented research is that it is 

based completely on the real-world data, omitting 

computer-oriented simulations 

The contents of the paper are as follows. The 

measurement system is briefly introduced in Section II. 

Next, the environmental conditions and acoustic noise 

characteristics making fault detection difficult are 

discussed. Experiments using various noise-resilient AI-

based classification methods are described in Section IV. 

Results of the fault detection in various environmental 

conditions and using different AI-based classifiers are 

presented in Section V. Finally, conclusions drawn and 

future prospects are iterated in Section VI. 

 II. DATA AQUISITION AND PROCESSING SYSTEM 

The measurement system used for the experiments was 

constructed [5] to record acoustic signals generated by the 

ratchet mechanisms [6] being part of the propulsion system 

in the BMX-type bicycle. Such a hardware is located 

inside the gear, responsible for rotating the wheel, thanks 

to the set of pawls based on the ratchet ring (Fig. 1). This 

way it is possible to transmit the force generated by the 

user to the gear, rotating the wheel and move the vehicle. 

Latching the pawl against the teeth generates the 

characteristic sound, based on which the attempt to 

determine the actual state of the system may be made. The 

considered faults included disabling particular pawls, 

which drives the number of detectable categories. For 

instance, in the 4-pawl ratchet there are four faults possible 

(respectively, one, two, three and four pawls disabled) with 

one nominal state (all elements operating correctly). This 
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is the catastriphic fault, as taking out the pawl changes the 

structure of the propulsion system. Parametric faults could 

be considered (aimed at the gradual teeth or pawls wearing 

detection), but as they are more difficult to implement in 

the actually working system, the are not considered here.  

 

 

Fig. 1. Construction of the diagnosed mechanism  

The measurement (Fig. 2) system contains mechanical 

and electronic modules and was built to operate the 

mechanism and acquire acoustic data from it. The ATMega 

328P microcontroller-driven DC motor allows for rotating 

the bicycle wheel so the “click” sounds made by the pawls 

moving along the ratchet can be recorded. The reed switch 

attached to the wheel allows for counting the number of 

revolutions (which is important, as the analyzed signal is 

periodic). For the particular mechanism the number of 

sounds generated during the single revolution is constant, 

so counting them may be used as the fault indicator. The 

electronic part (implemented using the Personal Computer 

– PC) is resposnible for the sound acquisition thanks to the 

microphone located close to the wheel. The sampled sound 

pattern is also processed there, concluded with the fault 

detection and location procedure. 

 

Fig. 2. Architecture of the diagnostic system  

The motor control software was written in C++ (one of 

the standard techniques for programming 

microcontrollers), while the PC-based diagnostic part was 

prepared in Python, using popular libraries for data 

processing, such as scikit-learn. The system is constantly 

optimized to increase efficiency and decrease the occupied 

memory. Modifications are made in both software and 

hardware parts, so it could be applied in practical 

applications. 

 III. ENVIRONMENTAL NOISE CHARACETRISTICS 

The system allows for the data acquisition in the sound 

spectrum range (between 20Hz and 20kHz). The samples 

can then be analyzed in the time, frequency and mixed 

domains. Finding the optimal set of features (extracted 

from the collected samples) is a crucial task for the 

diagnositcs of ratchet mechanisms. In a real-world 

scenario the additional problem is the quality of the 

recorded sound. This strongly influcences the subsequent 

steps, i.e. data collection for the training data sets, machine 

learning procedure and decision making by the selected 

classifiers.  

Initially, all recordings were done in the anechoic 

chamber, where any noise was suppressed and external 

sound eliminated. In the actual system’s application, 

multiple sources of disturbances are possible. These 

include both the white (related to other machinery 

operating in the background, etc.) and the color noise (due 

to the narrow band phenomena). Besides the time-

invariant stochastic processes, short-time events may also 

occur (including human voice, short pitches of the key 

falling, etc.). This means that the disturbances may overlap 

on the useful signal during the whole recording time or 

have a short duration (like the sound of the door closing). 

In Fig. 3 two scenarios of the ratchet mechanism operating 

with the Additive White Gaussian Noise (AWGN) [7] of 

different power are presented. The noise was generated by 

the software and combined with the recorded sounds of the 

ratchet. This allows for the controlled insertion of the 

disturbances into the original acoustic signal, depending 

on its power: 

 𝒙𝒏 = 𝒙 + 𝛼 ∙ |max 𝒙 − min 𝒙| ∙ 𝑁(0,1)  (1) 

where N(0,1) is the normal random distribution with the 

unit variance and 𝛼 ∈ (0,1) is the coefficient determining 

the noise power depending on the signal’s dynamic range. 

This way the desired Signal-to-Noise ration is determined. 

 

Fig. 3. White noise superimposed on the analyzed acoustic 

signal for α=0.05 (a) and α=0.4 (b) 

Fig. 4 presents how the short disturbance influences the 
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ability to count “clicks” and makes the diagnostcs difficult.  

 

Fig. 4. Analyzed acoustic signal with the short-time disturbance 

The main challenge for the diagnostic system is now to 

maintain the high accuracy (which was achieved in the 

more “user-friendly” conditions [5]) in the case of worse 

quality of sound samples. This may be done either by the 

de-noising procedure, or applying the more sophisticated 

classifier [8]. Both approaches were tested during the 

experiments. 

The data sets used for training the intelligent module 

were created by testing the selected bicycle hubs in the 

noisy conditions in two locations with different acoustics, 

where various background sounds could be recorded. 

These included the underground garage with, respectively, 

concrete walls, and different hardware present inside (such 

as garden machinery, bike, etc.). Besides recording the 

ratchet sound, additional tracks were recorded 

independently, containing short events, such as coughing, 

hands clapping, moving the keys, yelling. These could be 

later added to the useful patterns, making the fault 

detection more challenging.  

 IV. DATA SETS AND PROCESSING METHODS 

Each recording (stored in the file) contains the full 

revolution of the wheel, where multiple pawl “clicks” are 

present. Assuming such a signal is provided to the input of 

the diagnostic software, the key features are next extracted 

and the vector undergoes the analysis leading to the 

classification outcome.  

The important aspect now is the training and testing the 

AI-based methods to verify its accuracy on data including 

phenomena described in Section III. The data partitioning 

was applied, consisting in separation of the generated 

sound files into the exclusive subsets, one of which (T) 

being used for the evaluation. The cross-validation process 

is repeated N times (here N=5). Each sound file is 

represented by the single feature vector (example) v: 

 𝑣 = {𝑣1 ⋯ 𝑣𝑚 𝑐}  (2) 

This way each recording is represented only once and 

belongs either to the training or to the testing set (but not 

both). Each vector contains the elements obtained from the 

time- frequency and wavelet-based analysis of the original 

pattern: 

• number of pawl “clicks” per a single wheel 

revolution 

• energy of four subsequent “clicks” (as the number 

of pawls in the examined ratchets was 4) 

• duration of four subsequent “clicks” 

• volume and width of scalograms for these four 

“clicks” 

• magnitude and frequency of the spectral pitch of 

three odd and three even “clicks” 

This way 32 features are collected in each example, 

supplemented with the category number (indicating either 

nominal state of the SUT or the index of disabled pawl). 

The sets were filled with data from multiple hubs of the 

same type, but with different state of wearing. This makes 

knowledge extracted from data closer to the real-world 

scenarios. Overall, all data sets contain 600 files 

(examples). Their number and variability (3 different hubs 

and 2 recording conditions) allows for verifying 

generalization abilities of the system (as the number of 

hubs for bicycles is very large and it is not possible to 

consider all of them in the training data).  

The classifiers applied for the experiments were 

selected to tackle the uncertainty conditions. They include: 

• Decision Tree (DT) – the traditional rule-based 

approach, where the main hyperparameters are the 

method of the test selection for the node  

• Random Forest (RF) [9] – extension of DT into 

multiple trees, trained on various subsets of the 

training set L. Here the main hyperparameter is the 

number of generated trees. 

• Artificial Neural Network (ANN) [10] – the simple 

and multilayer perceptron architectures aimed at 

classification. In the first case it is the single-layer 

network with the hyperbolic tangent activation 

function, while the second scenario includes hidden 

layer, with number and the number of neurons in 

each of them are hyperparameters 

• K Nearest Neighbors (kNN) – metrics-based 

classifier, where k examples from the set nearest to 

the currently analyzed vector decide about the fault 

category. Hyperparameters include the distance 

metrics and the number of neighbors. 

• Naïve Bayes Classifier (NBC) – statistical 

approach where the probabilities are calculated as 

the frequencies of the attribute values occurrences. 

• Support Vector Machine (SVM) [11] – the method 

similar to ANN, but based on the kernel function 

transformation (to increase the classification 

accuracy). The main hyperparameters include the 

kernel function and its coordinates (for instance, the 

width of the Radial Basis Function). 

• Ada boost – the gradient boosting method, 
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increasing the chance of correctly classifying the 

“difficult” data.  

• Quadratic Discriminant Analysis [12] – the simple 

statistical classifier that assumes the attributes in 

the analyzed set fall into the Gaussian distribution, 

which is the basis for constructing the separating 

quadratic-type hyperplane. 

• Gaussian Process – the classifier also assumes the 

Gaussian distribution of attributes in data. Similarly 

to SVM, the type of the applied kernel is important.  

In each case the classifier is trained on one set and 

tested on the other. The quality measure was accuracy: 

 𝑎𝑐𝑐 =
|𝒗: ℎ(𝒗)=𝑐(𝒗)|

|𝑇|
∙ 100%  (3) 

where h(v) is the SUT state proposed by the diagnostic 

system, while c(v) is its actual category. Verification of the 

classifiers is done using the available data as follows: 

The classifier is trained on the “clear” recordings and 

with the simulated noise added to them. It is then tested on 

the separate recordings with the noise included and also 

short-pitched environmental disturbances. The aim of the 

experiments is to check if the previously effective 

classifiers will maintain the fault detection accuracy after 

introducing the disturbances. Also the robustness and 

versatility while analyzing different hubs (of the same type 

but in different exploitation state) and environmental 

conditions was tested. 

 V. EXPERIMENTS 

This section contains results of experiments for the 

selected classifiers. They were divided into particular 

stages, for estimation of the classifiers’ usefulness.  

 A. Initial selection of classifiers 

The first one was to select the optimal classifiers for 

the task. Average results for the preliminary evaluation are 

in Fig. 5.  

The most effective is RF containing 100 trees (over 

75%), with the QDA behind it (72.2%). The last classifier 

with the acceptable accuracy (i.e. above 50%) is DT. The 

remaining classifiers are not efficient enough to be used 

further. Note that SVM and AB underperform, though their 

structure considers uncertainty conditions. Introduction of 

more versatile data (including more hubs witch pawls and 

testh in different wearing states – though still opertional) 

led to the decrease of the accuracy, especially if the noise 

power is higher than the one present in the training data. 

For the presented featurs the rule-based methods seem to 

be more suitable for the correct fault identificatio, while 

RF additionally tackles the uncertainty conditions. 

Further improvement of the classifiers’ performance 

can be done through the thorough, time-consuming 

hyperparameters’ optimization. Improvement is especially 

expected for SVM, neural network and Ada boost. 

 

 
Fig. 5. Comparative analysis of the selected classifiers’ 

accuracy 

 B. Change in the data selection for training 

The new mode of the training data set preparation was 

employed to obtain more reliable results and verify 

generalization ailities of the proposed classifiers. Four 

approaches of generating training and testing data from the 

recorded files have been tested:  

M1 – a single vector v is generated from each file in both 

sets (T and L). 

M2 – a single vector v is generated from each file in L while 

all possible vectors are generated from each example 

in T. 

M3 – all possible examples are generated for a single file 

in L, with only one example in the single file from T. 

M4 – all possible examples are generated for each file in 

both L and T. 

Everytime only one example is extracted from the 

single file, there is no threat of putting the same run into 

both sets (and therefore decreasing the generalization 

abilities).  

For the experiment, the specific set T was created, by 

putting inside a single file for each hub with each possible 

fault. This way the set eith 45 files was created, while 555 

files were put into L. Fault identification results for the 

classifiers selected from Section V.A using all four 

methods presented above are in Table 1. As before, the 

values here are averages for 5 trials.  

Table 1: Comparison of fault identification results for 

different methods of creatintg data sets from recordings. 

  M1 M2 M3 M4 

DT 66,7% 82,2% 74,9% 84,4% 

RF 80,0% 88,9% 91,9% 97,8% 

QDA 64,4% 80,0% 70,6% 80,0% 
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RF is still the best classifier, though its accuracy 

depends on the data set preparation. The worst case is still 

the first method, (i.e. one example per file), because there 

is no redundancy between L and T. Similarly, the amount 

of training data influences the accuracy as knowledge from 

larger sets is better explored for DT and RF. 

 C. Influence of the white noise to the fault detection 

accuracy 

This experiment consisted in verifying the influence of 

noise on the fault detection accuracy. For top 3 classifiers 

from section V.A the testing sets were modified by adding 

to the recoirdings the noise with increasing power 

(expressed by different values of α – see (1)), while the 

training examples remained “clear” (i.e. with the minimal 

amount of the white noise present). Results for DT and 

four dfferent methods of extracting examples from files are 

in Fig. 6, for RF are in Fig. 7, while for QDA – in Fig. 8. 

Outcomes confirm individual accuracies of the particular 

classifiers.  

 
Fig. 6. Influence of the noise on the diagnostic accuracy of DT 

 
Fig. 7. Influence of the noise on the diagnostic accuracy of RF 

In all cases the noise with α above 0.25 makes fault 

classification very difficult (as accuracy falls below 50%). 

This is the practical hint about the minimal required 

conditions of sound recordings if the “clear” (noiseless) 

data are used for training. The white noise affects at least 

some part of the time-based symptoms, making them 

detectable incorrectly. The solution for that phenomenon 

may be denoising procedure, assuming the crucial 

components for the feature extraction are not degraded. 

Another approach would be to intorduce the noise to the 

training set as well, which should improve accuracy for 

detecting faults in the presence of noise at least of the same 

power as used during the training.  

 
Fig. 8. Influence of the noise on the diagnostic accuracy of 

QDA 

 D. Influence of the short-timed disturbances on the fault 

detection accuracy 

In this experiment to the original acoustic signal short-

time disturbances are added. The latter were generated as 

the separate files, containing sounds with relatively short 

duration but high power. This means only part of the 

recording is affected (for instance, in one revolution period 

of the wheel). Therefore if methods M1 and M2 are used, 

the accuracy is higher, because less examples are extracted 

from the recording and they are less affected by such 

disturbances. Alternatively, introducing multiple examples 

from the single file improves the algorithms’ performance. 

Results for all classifiers are in Fig. 9. 

 
Fig. 9. Influence of the short-time disturbances on the 

classifiers accuracy 

Overall, occurrence of these disturbances has negative 

impact on the ability to distinguish faults. In practice it is 

more reasonable to leave out recordings containing such 

events and repeat them until the correct data acquisition 

may be performed. If this is not an option (for instance, 

because of the recurring problems with isolating the 

recording system from the background influence), only the 

symptoms robust against such effects should be selected 

(though the accuracy of the classification would still be 

degraded). 
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 VI. CONCLUSIONS 

The presented research shows the applicability of the 

acoustic analysis for the catastrophic fault identification in 

the ratchet mechanisms. The main problem considered in 

this work was to evaluate the influence of the background 

disturbances (seen as both the white constant noise and the 

short-time sound) on the fault detection and identification 

abilities. The second aim was to propose different data 

selection methods on the generalization abilities of the 

selected classifiers. Multiple algorithms have been applied 

in the scheme to compare their accuracy and to select the 

most promising approaches.  

It was determined that the noise poses a significant 

problem for the diagnostic procedure. In the case of the 

ubiquitous white noise, a lot depends on its power 

compared to the useful signal. To some extent there is no 

need to implement the denoising, as the correct symptoms 

can be extracted from the acoustic pattern. After exceeding 

the threshold power, the denoising might be required, or 

training the system with the noisy data (examples created 

from the AWGN-affected signals). The disturbances of 

short duration are more difficult to tackle, as even their 

occasional occurrence may significantly affect the ability 

to extract features accurately. In this case either another set 

of robust features should be applied, otherwise the sound 

recording must be repeated. The latter is practically easier 

to perform, but not always possible.  

The future research will be devoted to introduce 

additional classifiers and optimizing them, especially in 

the noisy conditions with the increasing power of the 

disturbance. Also, more complex approaches, such as 

classifier fusion should be tested [13]. Finally, denoising 

procedures and their influence on the ability to select the 

features properly should be evaluated.  
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