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Abstract –  
Accurate production planning is economic interest of 
manufacturing companies. Reducing the work-in-
progress levels, the lead time or control efforts with the 
simultaneous increase of utilization and adherence to 
schedule might lead to instantaneous cost reduction 
and to increased competitiveness on long-term. In the 
era of digitization various artificial intelligence-based 
methods have been investigated by the scientific 
community to improve these key performance 
indicators. In this paper the results of a joint research 
project dealing with planning quality improvement 
with the help of Machine Learning (ML) are 
summarized. The results of two use case studies 
investigating the application and suitability of different 
planning approaches in the semiconductor and steel 
industries are presented and considerations regarding 
the practical application of ML assisted planning 
approaches are discussed.  
 
Keywords – Production scheduling; Production planning 
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 I. INTRODUCTION 

Production Planning and Control (PPC) coordinates all 
relevant activities along the order processing chain to 
ensure that the predefined logistic KPIs, such as delivery 
times, inventory levels or capacity utilization, are in the 
acceptable range [1]. As achieving performance targets 
can have short and long-term economic consequences for 
manufacturing companies, reliable and accurate 
production planning is vital. However, unforeseen events, 

such as machine failures or delays in material delivery, 
insufficient underlying planning data or inappropriate 
planning and control systems itself can cause deviations 
between a production plan and its execution. A common 
countermeasure is the increased use of buffers, which 
contrarily not only increases coordination and control 
efforts but might lead to negative effects, such as higher 
inventory levels, higher throughput time or lower capacity 
utilization [2]. Instead, increasing the accuracy and 
reliability of the production plan and its execution can 
reduce the number and impact of deviations and therefore 
help to achieve the desired performance targets. 
Conveniently, the advancement of digitalization in 
companies and the increasing use of IoT-devices in 
manufacturing makes more and more data on the relevant 
processes available, opening the door for data-driven 
planning methods and the use of new technologies, such as 
Machine Learning (ML). However, while promising 
solutions to isolated problems exist in the literature, 
several open questions still remain, e.g. how to best 
integrate them into a holistic approach to PPC for cyber-
physical production systems [3]. The results presented in 
this paper are on the one hand results of the national 
research project MLinPPC and on the other hand the 
continuation of previous works – started before the 
MLinPPC project and to be continued after the end of this 
project – in the fields of cyber-physical production systems 
and situation aware PPC. The remainder of the paper is 
organized as follows: in chapter II we review previous 
work of the authors in the field of PPC assisted by Machine 
Learning (ML) and other related literature, in chapter III 
we show the results of an industrial use case study for two 
different planning approaches, that systematically and 
iteratively improve the planning quality (PQ) of a 
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production plan with each planning cycle based on ML 
methods. In chapter IV, we discuss considerations 
regarding the practical application of ML-based planning 
approaches. Finally, in chapter V, we summarize our 
results and provide an outlook. 

 II. STATE-OF-THE-ART 

In previous works, the authors showed that production 
planning based on dynamic data – generated with various 
machine learning (ML) algorithms – potentially 
outperforms classical, static and analytical approaches 
(e.g., work in progress prediction with LSTM [4], lead 
time prediction with tree-based methods and regression 
[5]). The conducted research involved different ways of 
work from the beginning of simulation [6], through digital 
twin [6],[7] to the end of pure historical data analysis and 
usage [5]. The authors made a first try to define the 
planning quality (PQ) and differentiate it from robustness 
[8]. A common problem for data and ML based planning 
methods is low data quality. The main causes for low data 
quality are typically recent (within the past 10 years) 
digitalization of a company and due to the second nature 
data collection is treated at these companies. Improving 
upon these aspects usually involve assigning a cost to 
having low quality data and better operator training [9]. 
When considering data quality and quantity together, there 
is usually a trade-off between the two in practice: large 
amounts of low-quality data, small amounts of high-
quality data and anything in between. Doing machine 
learning on its own at the two extremes can be 
troublesome. The first extreme is handled by extensive 
data preparations and the latter is handled by introducing 
simulation. (Note that the preparation may move the 
needle into the latter direction, requiring the ML to be 
supplemented by simulation anyway). The simulation 
models in these cases are somewhat bounded in detail and 
highly depend on the underlying company, process and 
properties one wishes to learn [10]. Digitalization does 
help, though often indirectly, to improve competitiveness 
via its better transparency of the operations data at a 
company. However, the scale of the company and the 
digitalization amount to be supplemented by more 
digitalization is not a linear relationship, nor is the cost 
associated. SMEs have better chance to become digitalized 
whereas large and established companies have more 
stumbling blocks (from management to the shop floor) 
counteracting such changes [11]. The resistance to (the 
expansion of) digitalization at a company is often not 
technological in nature, but human reluctance to “change 
what’s working fine” from one’s perspective. Depending 
on the company's general properties (i.e., archetype), 
education, simulation and demonstration of what the 
current and future data collection may enable, along with 
other incentives, can ease the transition considerably [12]. 
 

 III. PLANNING APPROACHES FOR IMPROVING 
THE PLANNING QUALITY 

The main idea of the MLinPPC project was to test 
approaches that systematically increase the PQ with the 
help of ML. For this purpose, two approaches were 
foreseen: the evolutionary and the function-based 
approach. While in case of the previous one the PQ is 
expected to increase iteratively with the adjustment of the 
planning data, the later one has an inherently high PQ and 
includes the update of the production schedule as well (for 
more information please see [3], [13]). In the following 
two subchapters an industrial use case study for each 
approach is presented.  

 A. Evolutionary approach 

The first use case study applies the evolutionary approach 
(see Figure 1) to improve PPC by using ML approaches. 
As shown in Figure 1, this approach is defined by 
improving the PQ iteratively, whenever the need for it is 
recognized. A visualization tool is used to evaluate the 
deviations from the production plan and therefore to 
determine, whether a new improvement cycle must be 
initiated. The study is based in the semiconductor industry 
and focuses on a specific process step within the 
production. In this process step deviations from the 
original production plan are especially high. Therefore, 
ML based forecasting is used to predict whether a lot will 
arrive at a particular workstation within a predefined 
number of shifts. 
 
 

 

Figure 1 An overview of the evolutionary approach use case 

 
As a basis for training and evaluation of the ML based 
planning method, we use confirmation data of the 
workstations under investigation. This data describes 
whether the processing of a specific lot is completed at a 
specific workstation. We consider state-of-the-art 
ensemble learning approaches, such as lightGBM and 
further plan to conduct a comparison of various other ML 
algorithms. Finally, to evaluate the performance of the 
models, we consider various metrics such as accuracy 
(acc), F1-score, precision, and recall. The choice of this 
metrics helps us to take into account the challenge of 
imbalanced data, that is expected to be present within the 
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historical as well as the future data. In Figure 2, the 
evaluation results of the lightGBM model for a 48-hour 
prediction horizon are shown. In Figure 2-a, the prediction 
results (accuracy) from different iterations are shown as 
box plots, where different colours represent different 
metrics. Furthermore, Figure 2-b shows the model 
evaluation of each iteration explicitly. There it can be seen 
that with each iteration the performance of the ML model 
increases. Moreover, the performance strongly correlates 
with the amount of data used for training the model. In 
general, the results show that the explored problem is 
predictable by ML although for the application of the 
model in the production process better results are required. 
Therefore, the development of the prediction model is still 
work in progress. As a next step we plan to analyse what 
is the optimal trade-off between the training data- size and 
the accuracy which is important when aiming to develop 
an evolutionary approach. Furthermore, we plan to 
investigate on how we can detect special time-based events 
in the data, such as Christmas, that highly influence the 
production. In this regard, we will consider outlier and 
anomaly detection approaches. 

 

Figure 2 Evaluation results using lightGBM model and a 
prediction horizon of 48 hours. 

 
As a visualization tool, a dashboard was developed using 
the open-source framework Dash, implemented in Python. 
The raw data is first pre-processed in an independent 
python script, with the output data saved locally as input 
for the dashboard. The dashboard includes four windows 
for the following topics: Lead time, Gantt chart, WIP and 
the accumulation. In the lead time window, a histogram of 
all lead times (calculated per job) is given, with a color 
coding based on different categorical properties, such as 
the plant ID and the product group. The Gantt chart 
displays a given selection of jobs (selected from the entire 
job list) and is broken down into the different stations at 
which the product is produced. As jobs are added in a 
color-coded way, this visualization allows for the quick 
identification of utilization of stations over time. The WIP 
visualization is the sum of products which are finished at 
a particular workstation per day. By summing over all 
workstations, and comparing individual workstations with 

another, one can easily see the overall capacity of 
production, and identify bottlenecks and variations in 
production. Finally, the accumulation plot tracks the 
progress of production at a given workstation over time. 
With finished products being added with a negative sign, 
the influx and outflux of products at a workstation can be 
observed through the course of the day. Figure 3 shows a 
screenshot of the visualization tool. 
 

 

Figure 3 An example of the AxoLOTI showing ML model 
evaluation over the iteration. 

B. Function based approach 

The second use case of the study applies the function-
based approach to improve the PPS of a duo rolling mill 
for the production of high-quality steel and titanium plates. 
The production process can be described as follows. The 
plates are heated to a specified temperature before rolling 
can begin (the rolling temperature varies depending on the 
product). Then, a few rolling passes take place in which 
the thickness is reduced and the length is increased. During 
rolling the material cools down; once a minimum 
temperature is reached, the plates are again reheated in the 
furnace to rolling temperature. This cycle (one cycle is 
called a heat) is repeated until the target thickness is 
reached. 
As the production process and its parameters vary 
depending on the alloys and dimensions, the following 
restrictions must be considered: the furnace temperatures, 
heat requirements, plate dimensions for the optimized 
wear of the rollers, the stacking order after production, the 
weight limit of the overhead crane and the priorities of 
specific qualities. In the status quo, the planning of the duo 
rolling mill is done manually. Well-trained experts apply 
heuristics and decide for near-optimal schedules that 
combine several goals: minimizing the makespan, 
optimizing the temperature-curve of the furnace and 
optimizing the stacking order to improve the follow-up 
processes. As product variation increases steadily and 
additional targets (e.g., optimizing CO2 emissions or total 
energy consumption) are introduced, the planning problem 
becomes more complex each year. Therefore, tools are 
needed to support the experts and to further optimize 
reaching the targets. 
The function-based approach of the presented use-case 
consists of two main parts. In the first step, the uncertainty 
of the production process is handled. The plates of each 
order require specific thicknesses which are achieved by a 
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varying number of rolling passes depending on e.g. 
material consistence or required quality. The estimation of 
the process time of an order at the duo rolling mill is thus 
a challenging task which needs to be tackled within   the 
planning and scheduling approach. For overcoming this 
obstacle, the authors analysed different supervised ML 
approaches for predicting the process time at the duo 
rolling mill, of which the Gradient Tree Boosting approach 
showed the most promising results. Since the focus in this 
paper is on the planning approach in general and due to the 
limited pages, the prediction modelling and procedure is 
not explained in detail, the following tables and 
enumeration should give an overview of used input and 
basic outcome though. The features for prediction are 
obtained from order specifications and include information 
such as: quality, material, the number of plates, the 
required lengths, width or thicknesses, the required 
temperatures, the weights or the steel slab numbers. 
After several pre-processing steps of cardinality analysis, 
outlier detection as well as feature selection, the following 
algorithms are compared: Regression Tree (RT), Linear 
Regression (LM), Random Forest Regression (RF), 
Support Vector Regression (SVR), Artificial Neural 
Network (ANN) and Gradient Boosting Machine (GBR). 
The error measures Mean Absolute error (MAE), Mean 
Absolute Percentage Error (MAPE), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE) and 
Normalized Root Mean Squared Error (NRMSE) serve as 
evaluation metric for comparison. The results can be found 
in Table 1. 
 

Table 1. Summary of error measures 

Algorithm/ 
Accuracy 

RT LM SVR ANN RF GBR 

MAE 16.4 14.3 18.0 14.4 13.6 12.7
MAPE 28.5 25.5 31.1 25.8 24.0 22.9
MSE 553 581 624 353 335 283
RMSE 23.5 24.1 25.0 18.8 18.3 16.8
NRMSE 13.4 13.8 14.3 10.7 10.6 9.6

 
The last column Gradient Tree Boosting shows best results 
with respect to all error measures and is thus currently the 
most promising approach for predicting the process time 
at the duo plant for planning and scheduling.  
The second step of the function-based approach includes 
the optimization and the planning and scheduling of the 
orders. At first, the termination of orders is carried out on 
a weekly basis by the ERP System SAP. Under 
consideration of the planning horizon for detailed 
scheduling and sequencing, which in this use-case is 
defined by a setup event of the duo plant called roller 
change, the backlog for the next planning period can be 
defined. The scheduling optimization finally can be 
described by the following variables, restrictions, and 
objective functions. 

 
Optimization variables for each order: 
 Assigned shift,  
 Sequence within a shift, 
 Assigned stack. 

Restrictions: 
 No production after shift end, 
 Sequence based on priorities of qualities, 
 Sequence based on descending width classes of 

plates (avoiding rills and pits through outworn 
rollers), 

 Sequence based on length of plates (building stable 
stacks after rolling). 

Objectives: 
 Energy consumption (approximated by the integral 

of the temperature curve), 
 Number of offloading events of two available stacks. 

 
The scheduler thus strives for identifying the optimal 
sequence for minimizing the energy consumption as well 
as the manual effort arising through the offloading and 
managing of stacks. These stacks need to be 
homogenously built and sorted for the subsequent heat-
treatment process whereas each is limited to a maximum 
weight of 17 tons. Moreover, due to limitation in space the 
maximum number of stacks at a time equals two and for 
ensuring stability of the stacks, the dimensions of the 
plates need to be considered already in the scheduling 
approach. The dimensions of the plates also play an 
important role regarding the quality of the processed 
plates. In order to avoid pits and rills by outworn rolls 
orders are assigned to width classes based on the required 
width of the plates and the production sequence is built 
with respect to descending width classes. With other 
words, the optimizer is only allowed to alter the sequence 
of orders having the same width class. The energy 
consumption is approximated by the integral of the 
temperature profiles resulting from the required 
temperature levels of each order. The weighting between 
the two objective functions is accomplished by domain 
experts. 
The optimization algorithm itself is based on an 
evolutionary algorithm consisting of the steps of selection, 
cross-over and mutation, as well as an elitism strategy and 
is implemented in Python. For selecting individuals from 
the parent generation, a probability distribution according 
to the fitness value is calculated. i.e. individuals with better 
fitness values are more likely to be selected. In the 
following cross-over step the genes of the individuals are 
combined resulting in a child individuum, with half of the 
gene information from each parent. Mutation finally 
randomly adapts single genes of an individuum such as, 
start time or coil setup of an order. Figure 4 shows a 
scheduling result obtained by the optimizer. In the first row 
each box corresponds to an order and its process duration 
on the duo mill. The grey boxes symbolize waiting time, 
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which might be necessary to reach the desired temperature 
for a specific order. The colours of the boxes correspond 
to the temperature levels, whereas the temperature profile 
over time is depicted in the second row. The width of the 
plates are shown in the third row which are, apart from a 
few prioritized orders at the beginning, arranged in an 
descending order. The weight levels of the two stacks are 
finally depicted in rows 4 and 5. 

 

Figure 4. Production schedule example 

 

 IV. CONSIDERATIONS ON THE PRACTICAL 
APPLICATION 

In this chapter, we consider the integration of ML assisted 
planning approaches into real production environments. 
Unfortunately, most scientific articles focus only on the 
specific algorithms and the validation of the results and 
allude the next logical step: how to use the results and feed 
it back to the actual planning process. One reason for this 
is the shift of the scientific field from computer 
science/engineering to management. The other reason is 
that applications of the results is then performed as part of 
an integrated solution via software development and thus 
becomes out of scope for the articles at hand [14]. 
Fortunately, some high-level general hints can be extracted 
from the articles which can be summarised along two lines: 
the workflow and the update rules. 
With regards to the workflow, there are two main 
approaches: 1) a human operator updates the planning 
parameters in the live system, 2) the integrated planning 
system updates the planning parameters autonomously. 
The tipping point between the two comes down to the 
number of parameters to be updated, the detail level of the 
models used during learning and the overall information 
system integration of the factory in question. Human 
operators tend to favour small number of parameters (~50) 
and beyond that, software support to update/accept many 
of them at once. On the model detail aspects, the need for 
manual adjustments stem from how the model was able to 
capture “quirks” or special corner cases of the underlying 
production. The more irregular the production process is 
the more likely the model needs to be overruled. Lastly, if 
the model ends up integrated with the information system 
the factory is run on, the application of the results is then 
done with no human operator involvement. Corner cases 

are either ignored, suppressed or reverted to more 
“classical” planning processes [15]. 
With regards to the update rules, there are three main 
approaches: 1) apply results verbatim, 2) alpha-blend old 
and new planning parameters, 3) human operator decides. 
Applying the results verbatim typically happens when the 
factory process isn’t that complicated, and the algorithms 
produced high quality and reliable results. Usually, 
automatic application is preceded by a verification the 
parameters are within reasonable bounds. The drawback of 
this approach is that drastic (even if reasonably bound) 
changes can cause sudden drifts in the production process 
to the extent as if the factory was pulled on strings around. 
The alpha-blend method is more subtle in terms of 
introducing changes to the physical process by using some 
percentage of the previous parameters and some 
percentage of the newly learned parameters (i.e., 80%-
20%) split. The advantage is the slow drift of the process 
towards the desired performance metrics. The 
disadvantage is the slower drift – the improvement may be 
spread across several dozen planning cycles. The last 
approach is the general human decision which considers 
the previous parameters, the learned parameters and 
external domain knowledge of the physical process not 
necessarily captured by the models. This approach may 
also involve the previous two approaches on a case-by-
case basis. For example, the operator decides some 
parameters are applied verbatim, some with a 90%-10% 
blend, some with a specific value ignoring the learned 
parameters due to how the factory will have an out of 
ordinary period until the next planning cycle [16]. 
The last consideration is about the change in parameters 
and how the factory (shop floor) reacts to those changes. 
Most specifically, tightening operation times is typically 
met with resistance. There are valid reasons for not trying 
to perform certain operations too fast in general, no matter 
what the model learned suggests: equipment reliability, 
quality, safety, resilience and redundancy considerations 
in general. The other reasons are simply due human nature 
and willingness. These brings us to perhaps the largest 
caveat of applying machine-learned planning parameters 
in practice, the factory (shop floor) may try and act 
adversarial, counteracting the effects of the “forced upon” 
parameter changes. This can manifest, for example, in 
artificial process slowdowns so that the master data the ML 
is getting trained upon causes the resulting model to drift 
towards the original pre-ML planning parameters. 
Avoiding this caveat is more of a managerial task than an 
information system one; all involved parties of the 
manufacturing process (planners and workers) need to be 
heard and involved in the designing of the feedback 
approach and understand the shared goal and benefits to be 
achieved by this new planning process [17]. 
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 V. CONCLUSION AND OUTLOOK 

The goal of the research project MLinPPC was to explore 
and implement different ML based planning approaches in 
order to systematically improve the PQ. In this publication 
we have summarized the results of this project. In the first 
part of the paper, we give an overview of the related 
literature and review previous work of the authors. We 
then discuss the implementation of two planning 
approaches, the evolutionary planning approach and the 
function-based planning approach, in a case study with two 
industry partners. While the results of the study 
demonstrate the applicability of both approaches, a 
comparison to suitable benchmarks, such as the currently 
used planning approaches, is still work in progress and 
thus a final evaluation is still needed. Moreover, in the first 
use case of the study, further development of the prediction 
models is needed as well. This includes the detection of 
special events that are not covered by the available training 
data or would potentially bias it. In the last part we 
considered the adoption of ML assisted planning 
approaches in production and the obstacles that exist to 
their adoption. While these obstacles usually get less focus 
in the literature, they may be crucial for success or failure 
of such methods in practice. Therefore, a well-defined 
strategy for deploying ML assisted planning approaches in 
production is essential. Such strategies should include a 
distinct workflow for production parameter and model 
updates, backup rules, in case of system delays, high errors 
or uncertainties, systems for error detection or uncertainty 
quantification and result communication to involved 
personal, such as shop-floor workers.  
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